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Abstract
Skyrmion walls are topologically nontrivial solutions of the Skyrme system
which are periodic in two spatial directions. We report numerical investigations
which show that solutions representing parallel multi-walls exist. The most
stable configuration is that of the square N-wall, which in the N → ∞ limit
becomes the cubically symmetric Skyrme crystal. There is also a solution
resembling parallel hexagonal walls, but this is less stable.

PACS numbers: 11.27.+d, 11.10.Lm, 11.15.−q

The Skyrme system, originally introduced as a model of nucleons, is an archetypal (3+1)-
dimensional classical field theory admitting topological soliton solutions. Much is known
about various types of skyrmion solutions, for example: isolated skyrmions in R

3, up to
relatively high charge [1–3]; a triply-periodic ‘Skyrme crystal’ [2, 4–6]; a doubly-periodic
‘Skyrme domain wall’ [7] and various types of singly-periodic ‘Skyrme chains’ [8].

The purpose of this communication is to investigate static N-wall solutions, i.e. the N > 1
generalization of the single-wall fields discussed in [7]. If one has two (or indeed N) well-
separated parallel walls, then the force between them can be made attractive by a suitable
relative orientation of the fields. So one expects there to be solutions representing N walls
bound together, although a priori the walls might merge together to form a single wall.

We investigate this by numerical minimization of the energy, and our main findings are
as follows. There are two obvious shapes for a single wall, namely square and hexagonal, and
it is known [7] that the latter has slightly lower energy than the former. If walls are allowed
to attract, then they do not merge but remain identifiable as separate parallel walls. There
is a stable bound configuration representing two parallel hexagonal walls, but this is not the
lowest energy 2-wall state. For N � 2, the lowest energy state consists of N parallel square
walls (each one being a square array of half-skyrmions), and as N → ∞ this approaches
the Skyrme crystal.

The energy density of a static SU(2)-valued Skyrme field U(xj ) on R
3 is defined to be

E := − 1
2 tr(LiLi) − 1

16 tr([Li, Lj ][Li, Lj ]), (1)
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where Li = U−1∂U/∂xi , and xj = (x, y, z) are the spatial coordinates. In what follows,
let us write U = �4 + i�jσj , where σj are the Pauli matrices, and the real 4-vector field
Φ = (�1,�2,�3,�4) satisfies Φ ·Φ = 1.

In this communication, we deal with configurations which resemble N walls or sheets,
each parallel to the xy-plane: so the field is periodic in x and y (with periods Lx and Ly,
respectively) and satisfies the boundary condition

�4 →
{

1 as z → −∞,

(−1)N as z → ∞.
(2)

For N = 1, and more generally for N odd, one has a domain wall which separates two vacuum
regions, where �4 = 1 and �4 = −1, respectively; for N even, one has the same vacuum on
both sides of the multi-layered sheet. In the asymptotic region |z| � 1, the three fields �j are
small and they satisfy the Laplace equation, since the energy density reduces to E ≈ (∂i�j )

2.
Assuming (without loss of generality) that Ly � Lx , we see by separating variables that the
leading behaviour as |z| → ∞ is typically �j ≈ C sin (μy) exp(−μ|z|), where μ = 2π/Ly .
In particular, the fields approach their asymptotic values exponentially quickly, with a scale
determined by the larger of Lx and Ly.

The topological charge Q (over a single cell) is

Q =
∫

T 2×R

Q dx dy dz, (3)

where

Q = 1

24π2
εijk tr(LiLjLk) (4)

is the topological charge density. We claim that Q is an integer. If N is even, then (2) allows
us to regard Φ as being defined, for topological purposes, on T 2 × S1, and then Q equals the
degree of Φ. If N is odd, then it is not quite so obvious why Q is an integer, but it follows
from the theorem in the appendix of [8]. The energy E is defined to be

E := 1

12π2

∫
T 2×R

E dx dy dz, (5)

and it satisfies the usual Faddeev bound E � Q.
In what follows, we describe N-wall configurations which were found by numerical

minimization of the energy functional E. We used a first-order finite-difference scheme for E,
with the spatial points (x, y, z) being represented by a rectangular lattice having lattice spacing
h, and we applied conjugate-gradient minimization. The lattice error in E goes like h2, and we
extrapolated the finite-h results for both E and Q to h = 0. The extrapolated value of Q then
gives a measure of the remaining error, which for the situations described below turns out to be
less than 0.2%. The boundary condition (2) was modelled by imposing �4 = 1 at z = −Lz/2
and �4 = (−1)N at z = Lz/2. As remarked above, the walls are exponentially localized in
z, and so as long as Lz is taken to be large enough, there is no discernable finite-size effect; a
value of Lz = 10 + 2N turns out to be sufficient for this. In each case, we adjusted the periods
Lx and Ly to their optimal size, meaning that the energy-per-cell is made as small as possible.
Numerical minima were randomly perturbed and then re-minimized, as a test of their stability.
As initial configurations we used the same sort of ‘rational map ansatz’ as in [7], involving a
Weierstrass elliptic function of x + iy (the lemniscatic form to get square symmetry, and the
equianharmonic form to get hexagonal symmetry), together with a suitable profile function
f (z) satisfying f (−Lz/2) = 0 and f (Lz/2) = Nπ .

The results are consistent with the anticipated general principle that the lowest-energy
configurations are arrays of half-skyrmions. For an N-wall, we expect that each fundamental
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Figure 1. Energy densities of the square 1-wall, square 2-wall and hexagonal 2-wall, and plot of
the energy Ê for the square N-wall (1 � N � 5) and hexagonal N-wall (1 � N � 2).

(This figure is in colour only in the electronic version)

Table 1. Energy Ê and cell size L for the square N-wall.

N Ê L

1 1.068 4.25
2 1.053 4.47
3 1.048 4.54
4 1.046 4.58
5 1.044 4.61

cell will contain a multiple of 4N half-skyrmions, and therefore its topological charge Q will
be a multiple of 2N ; this indeed turns out to be the case. As mentioned above, the walls do
not merge, but retain their identity; the location of each wall can be determined by looking at
the locus where �4 = 0.

The simplest case to describe is the square one, with Ly = Lx = L; our results for
1 � N � 5 are summarized in table 1, which gives the energy-per-charge Ê, and the optimal
value of L, for each N. Pictures of the N = 1 and N = 2 cases are presented in figure 1,
together with a plot of the energy data in table 1. Let us first comment on the data. The
normalized energy Ê of the square N-wall is surprisingly close to having a 1/N -dependence
(although there is no obvious reason why this should be so), and extrapolating on this basis
gives Ê ≈ 1.039 in the N → ∞ limit. This is very close to the energy of the (triply-periodic)
Skyrme crystal, a cubic array in which each fundamental cube contains eight half-skyrmions:
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its energy-per-charge, computed using the method described above, is Ê = 1.038. Further
support for the claim that the square N-wall tends to the Skyrme crystal as N → ∞ comes
from looking at the symmetries of the field Φ. These include, for example, the translations

x �→ x + 1
2Lx ⇒ (�1,�2,�3,�4) �→ (−�1,−�2,�3,�4),

y �→ y + 1
2Ly ⇒ (�1,�2,�3,�4) �→ (�1,−�2,−�3,�4),

zp �→ zp+1 ⇒ (�1,�2,�3,�4) �→ (�1,−�2,�3,−�4),

where the third translation (in z) denotes moving from the pth wall to the (p +1)st wall. These
are exactly the same as the translation symmetries of the Skyrme crystal [2]. The values for the
optimal cell length L = Lx = Ly are consistent with their approaching L = 4.7 as N → ∞,
this being the cell size of the Skyrme crystal (and similarly the distance between each parallel
pair of walls is approximately 4.7/2, as one would expect).

Each three-dimensional plot in figure 1 is an isosurface of the energy density E , namely
where E equals 0.6 times its maximum value. For the square case, the plots are over four
fundamental cells. One clearly sees square arrays of half-skyrmions. Observe that, for N = 2,
the half-skyrmions are aligned in the z-direction; the same is true for N > 2.

Let us turn now to the case of hexagonal symmetry. For ease of computation, we
follow the same scheme as in [7], namely taking Ly = √

3Lx and fitting two fundamental
parallelograms into the corresponding rectangle. Each such rectangle, of each wall, contains
eight half-skyrmions, as is seen in the hexagonal 2-wall picture of figure 1. For N = 1, the
energy of the hexagonal arrangement is Ê ≈ 1.062, less than that of the corresponding square
case [7], but for N � 2, the hexagonal arrangement is less efficient than the square one, and
(depending on the values of Lx and Ly) it is either a local minimum of the energy functional or
it is unstable. There is a local minimum hexagonal 2-wall solution with energy Ê ≈ 1.055,
which is only very slightly (less than 0.2%) higher than that of the square 2-wall. Its energy
density is depicted in figure 1; one feature to note is that the two walls are not aligned in the
z-direction, but are offset. If Lx and Ly are allowed to change so that the relation Ly = √

3Lx

no longer holds, then this solution becomes unstable and changes into the square 2-wall.
An isolated skyrmion of charge Q � 3 typically has a polyhedral shell structure, analogous

to carbon fullerenes, and it may be viewed as constructed from a section of the hexagonal 1-wall
(graphene), with the insertion of defects to create a spherical shell [2, 7]. There has also been an
investigation [9] of the possibility of constructing skyrmions as multi-walled spherical shells,
with the ‘shell material’ consisting of a double or triple wall. For the cases that were examined
in [9], either the walls coalesced, or one obtained a structure which resembled a shell-like
part of the Skyrme crystal. The findings reported above are consistent with this; in particular,
multiple hexagonal walls appear to be rather unstable, and therefore unsuitable for constructing
shells. But it does raise the possibility of stable high-charge skyrmions constructed as shells
of square multi-wall material, or equivalently as hollow chunks of Skyrme crystal, and this
would be worth investigating further.
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